3.694 \(\int \frac{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx\)

Optimal. Leaf size=179 \[ -\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{g^2 \sqrt{d+e x}}+\frac{2 (c d f-a e g)^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{g^{5/2}}+\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}} \]

[Out]

(-2*(c*d*f - a*e*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g^2*Sqrt[d + e*x]) + (2*(a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2)^(3/2))/(3*g*(d + e*x)^(3/2)) + (2*(c*d*f - a*e*g)^(3/2)*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.304446, antiderivative size = 179, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 46, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.065, Rules used = {864, 874, 205} \[ -\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} (c d f-a e g)}{g^2 \sqrt{d+e x}}+\frac{2 (c d f-a e g)^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt{d+e x} \sqrt{c d f-a e g}}\right )}{g^{5/2}}+\frac{2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)),x]

[Out]

(-2*(c*d*f - a*e*g)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(g^2*Sqrt[d + e*x]) + (2*(a*d*e + (c*d^2 + a*
e^2)*x + c*d*e*x^2)^(3/2))/(3*g*(d + e*x)^(3/2)) + (2*(c*d*f - a*e*g)^(3/2)*ArcTan[(Sqrt[g]*Sqrt[a*d*e + (c*d^
2 + a*e^2)*x + c*d*e*x^2])/(Sqrt[c*d*f - a*e*g]*Sqrt[d + e*x])])/g^(5/2)

Rule 864

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[((d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p)/(g*(m - n - 1)), x] - Dist[(m*(c*e*f + c*d*g - b*e*g
))/(e^2*g*(m - n - 1)), Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c,
 d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ
[p] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&  !IGtQ[n, 0] &&  !(IntegerQ[n + p] && LtQ[n + p + 2,
 0]) && RationalQ[n]

Rule 874

Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[
2*e^2, Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2} (f+g x)} \, dx &=\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}-\frac{\left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right ) \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x} (f+g x)} \, dx}{e^2 g}\\ &=-\frac{2 (c d f-a e g) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt{d+e x}}+\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}+\frac{(c d f-a e g)^2 \int \frac{\sqrt{d+e x}}{(f+g x) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{g^2}\\ &=-\frac{2 (c d f-a e g) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt{d+e x}}+\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}+\frac{\left (2 e^2 (c d f-a e g)^2\right ) \operatorname{Subst}\left (\int \frac{1}{-e \left (c d^2+a e^2\right ) g+c d e (e f+d g)+e^2 g x^2} \, dx,x,\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{d+e x}}\right )}{g^2}\\ &=-\frac{2 (c d f-a e g) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{g^2 \sqrt{d+e x}}+\frac{2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{3 g (d+e x)^{3/2}}+\frac{2 (c d f-a e g)^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{\sqrt{c d f-a e g} \sqrt{d+e x}}\right )}{g^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.269291, size = 132, normalized size = 0.74 \[ \frac{2 \sqrt{d+e x} \sqrt{a e+c d x} \left (\sqrt{g} \sqrt{a e+c d x} (4 a e g+c d (g x-3 f))+3 (c d f-a e g)^{3/2} \tan ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c d f-a e g}}\right )\right )}{3 g^{5/2} \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)/((d + e*x)^(3/2)*(f + g*x)),x]

[Out]

(2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*(Sqrt[g]*Sqrt[a*e + c*d*x]*(4*a*e*g + c*d*(-3*f + g*x)) + 3*(c*d*f - a*e*g)
^(3/2)*ArcTan[(Sqrt[g]*Sqrt[a*e + c*d*x])/Sqrt[c*d*f - a*e*g]]))/(3*g^(5/2)*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.332, size = 263, normalized size = 1.5 \begin{align*} -{\frac{2}{3\,{g}^{2}}\sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade} \left ( 3\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){a}^{2}{e}^{2}{g}^{2}-6\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ) acdefg+3\,{\it Artanh} \left ({\frac{\sqrt{cdx+ae}g}{\sqrt{ \left ( aeg-cdf \right ) g}}} \right ){c}^{2}{d}^{2}{f}^{2}-\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}xcdg-4\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}aeg+3\,\sqrt{ \left ( aeg-cdf \right ) g}\sqrt{cdx+ae}cdf \right ){\frac{1}{\sqrt{ex+d}}}{\frac{1}{\sqrt{cdx+ae}}}{\frac{1}{\sqrt{ \left ( aeg-cdf \right ) g}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x)

[Out]

-2/3*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(3*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*a^2*e^2*g
^2-6*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*d*f)*g)^(1/2))*a*c*d*e*f*g+3*arctanh((c*d*x+a*e)^(1/2)*g/((a*e*g-c*
d*f)*g)^(1/2))*c^2*d^2*f^2-((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*x*c*d*g-4*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+
a*e)^(1/2)*a*e*g+3*((a*e*g-c*d*f)*g)^(1/2)*(c*d*x+a*e)^(1/2)*c*d*f)/(e*x+d)^(1/2)/(c*d*x+a*e)^(1/2)/g^2/((a*e*
g-c*d*f)*g)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}}{{\left (e x + d\right )}^{\frac{3}{2}}{\left (g x + f\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x, algorithm="maxima")

[Out]

integrate((c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)/((e*x + d)^(3/2)*(g*x + f)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.71638, size = 902, normalized size = 5.04 \begin{align*} \left [-\frac{3 \,{\left (c d^{2} f - a d e g +{\left (c d e f - a e^{2} g\right )} x\right )} \sqrt{-\frac{c d f - a e g}{g}} \log \left (-\frac{c d e g x^{2} - c d^{2} f + 2 \, a d e g - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x} \sqrt{e x + d} g \sqrt{-\frac{c d f - a e g}{g}} -{\left (c d e f -{\left (c d^{2} + 2 \, a e^{2}\right )} g\right )} x}{e g x^{2} + d f +{\left (e f + d g\right )} x}\right ) - 2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d g x - 3 \, c d f + 4 \, a e g\right )} \sqrt{e x + d}}{3 \,{\left (e g^{2} x + d g^{2}\right )}}, -\frac{2 \,{\left (3 \,{\left (c d^{2} f - a d e g +{\left (c d e f - a e^{2} g\right )} x\right )} \sqrt{\frac{c d f - a e g}{g}} \arctan \left (\frac{\sqrt{e x + d} \sqrt{\frac{c d f - a e g}{g}}}{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}\right ) - \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d g x - 3 \, c d f + 4 \, a e g\right )} \sqrt{e x + d}\right )}}{3 \,{\left (e g^{2} x + d g^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x, algorithm="fricas")

[Out]

[-1/3*(3*(c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)*sqrt(-(c*d*f - a*e*g)/g)*log(-(c*d*e*g*x^2 - c*d^2*f + 2*
a*d*e*g - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*g*sqrt(-(c*d*f - a*e*g)/g) - (c*d*e*f -
(c*d^2 + 2*a*e^2)*g)*x)/(e*g*x^2 + d*f + (e*f + d*g)*x)) - 2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*
g*x - 3*c*d*f + 4*a*e*g)*sqrt(e*x + d))/(e*g^2*x + d*g^2), -2/3*(3*(c*d^2*f - a*d*e*g + (c*d*e*f - a*e^2*g)*x)
*sqrt((c*d*f - a*e*g)/g)*arctan(sqrt(e*x + d)*sqrt((c*d*f - a*e*g)/g)/sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)
*x)) - sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*g*x - 3*c*d*f + 4*a*e*g)*sqrt(e*x + d))/(e*g^2*x + d*g
^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2)/(g*x+f),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2)/(g*x+f),x, algorithm="giac")

[Out]

Timed out